
The Agile Developer & 
Technical Excellence

Anja Stiedl 



Warning and 
Disclaimer 

my times in Software Development are 
quite a while ago…

there is a lot of information  in here… 
some old news, some new news…
and hopefully some interesting…

not all might be applicable easily 
for your environment, for your systems, 
for your technologies…

let’s figure out together, 
what works or 
how it could work for us!

Anja Stiedl, 2021



General



Principle #11
The best architectures, requirements, 
and designs emerge from 
self-organizing teams. 

From the 
Agile Manifesto: 
(https://agilemanifesto.org/principles.html)

Principle #9
Continuous attention to 
technical excellence and 
good design enhances agility. 



Lean: 
eliminate Waste!

Lean production
transportation 
inventory 
motion
waiting
over production 
over processing 
defects

Lean SW Development
= task switching
= partially done work
= motion
= waiting
= extra feature
= extra processes
= bugs
= unused skills

T
I
M
W
O
O
D
S



Human Factor: 
Motivation
(Daniel Pink: “Drive”, 
youtube: https://www.youtube.com/watch?v=u6XAPnuFjJc)

Knowledge Workers are 
motivated by:

● Mastery
● Autonomy
● Purpose



Testers are people 
who write and run
software that tests 
products. 

Anja’s strong opinion:
Tester, Developer & Professionals?

Software-Developers 
are people who write 
professional quality 
software.  

Software-Developers 
who don’t ensure 
quality of their work, are 
not working 
professionally. Testing is 
one way to do so. 

In Scrum 
we call them both
(and others) 
“Developers”. 



Human Factor: 
Developing vs. 
Testing

Developing 
creates 
things

Testing 
destroys 
things



Self Organizing 
Teams

● all skills to get the job done - 
E2E, all phases of development, …

● teams take responsibility

● PO&devs plan the work in the 
iterations:
○ POs plan what to do 
○ devs plan how much to do 
○ devs plan how-to do it

● the Definition-of-Done defines the 
quality level to be achieved

● it’s a contract between PO & devs

some aspects:

what is it?



Community 
of Practise

A 
community of practice (CoP) 
is a group of people who 
"share a concern or a 
passion for something they 
do and learn how to do it 
better as they interact 
regularly.”

[definition from wikipedia]

what is it?



Technical 
Debt

what is it?

Technical debt (aka design debt or code debt) 
is a concept in software development that 

reflects the implied cost of additional rework 
caused by choosing an easy/limited solution 

now instead of using a better approach 
that would take longer.



Technical 
Debt Quadrant



Build in Software Quality



KISS

Keep it Simple and Stupid!
The KISS principle states that most systems work best 
if they are kept simple rather than made complicated; 

therefore, simplicity should be a key goal in design, 
and unnecessary complexity should be avoided.

[adapted from Wikipedia]

https://en.wikipedia.org/wiki/Simplicity
https://en.wikipedia.org/wiki/Design


Don’t Repeat Yourself!
DRY is a principle of software development to reduce repetition 
of software patterns, replacing it with abstractions or using data 
normalization to avoid redundancy.

In their book The Pragmatic Programmer, Andy Hunt and Dave Thomas apply it to 
include database schemas, test plans, the build system, even documentation. Besides 
using methods and subroutines in their code, they rely on code generators, automatic 
build systems, and scripting languages to observe the DRY principle across layers.

[adapted from Wikipedia]

DRY



SOLID

In software engineering, SOLID is an acronym for five design principles intended to make 
software designs more understandable, flexible, and maintainable. The principles are a 
subset of many principles promoted by American software engineer and instructor Robert 
C. Martin in his Clean-Code-movement: 

The SOLID concepts are

● Single-responsibility principle: "There should never be more than one reason for a 
class to change." In other words, every class should have only one responsibility.

● Open–closed principle: "Software entities ... should be open for extension, but 
closed for modification."

● Liskov substitution principle: "Functions that use pointers or references to base 
classes must be able to use objects of derived classes without knowing it." See also 
design by contract.

● Interface segregation principle: "Many client-specific interfaces are better than one 
general-purpose interface."

● Dependency inversion principle: "Depend upon abstractions, not concretions.
[adapted from Wikipedia]

https://en.wikipedia.org/wiki/Class_(computer_programming)


Design Patterns
Design Patterns help to design and write Software 
in a reusable way. 
Capturing a wealth of experience about the design 
of object-oriented software, four top-notch 
designers present a catalog of simple and succinct 
solutions to commonly occurring design problems. 
Previously undocumented, these 23 patterns allow 
designers to create more flexible, elegant, and 
ultimately reusable designs without having to 
rediscover the design solutions themselves.
Each pattern describes the circumstances in which 
it is applicable, when it can be applied in view of 
other design constraints, and the consequences 
and trade-offs of using the pattern within a larger 
design. All patterns are compiled from real 
systems and are based on real-world examples. 
Each pattern also includes code that demonstrates 
how it may be implemented in object-oriented 
programming languages like C++ or Smalltalk.



eXtreme Programming XP

Extreme programming (XP) is a software development methodology 
which is intended to improve software quality and responsiveness to 
changing customer requirements. ... The methodology takes its name 
from the idea that the beneficial elements of traditional software 
engineering practices are taken to "extreme" levels. [from 
Wikipedia]

A great overview can be found in the book 
James Shore: “The Art of Agile Development” 
and on the corresponding website: 
https://www.jamesshore.com/v2/books/aoad2



Pair Programming

[from: https://medium.com/@volkanbier_42259/how-to-put-pair-programming-into-action-ce9ebb9d711]



About Pair Programming

Benefits 

❏ Pair Quality / Review
❏ Pair Debugging 
❏ Pair Negotiation 

❏ Pair Learning 

❏ Pair Focus 
❏ to the inside
❏ to the outside

❏ Pair Courage 
❏ Pair Trust 

Antipattern 

❏ unequal / asymmetric access to keyboard / display 
❏ Dominance at the keyboard 
❏ Pairing-Marriages: no rotation between User 
Stories 
❏ Worker-Lazybone-Paires 
❏ Two Computers 
❏ Both work on their own task 
❏ 90% of User Stories 90% „done“ 
❏ People who can't stand each other have to do 
Pairing 
❏ Discussions without progress take longer than 10 
minutes 



Variations of Pair Programming

Mob-Programming

The basic concept of 
mob programming is simple: 
the entire team works as a team 
together on one task at the time. 
That is: one team – one (active) 
keyboard – one screen (projector 
of course). 

— Marcus Hammarberg, Mob programming

[from wikipedia]

Wolfpack-Programming

By moving the whole development 
environment to the cloud, we are 
no longer limited by the number of 
people who can comfortably fit 
around a single workstation; 
suddenly and entire team of 
programmers can work together 
on the same live code base. 

— Julian Fitzell, Helge Nowak



Test Driven Development - TDD

Start here



Test-First-Development - is it the same as TDD?

Test-First-Development/TFD and Test-Driven-Development/TDD are not 
synonyms.
Test-First-Development is when all the breaking tests are written first.
Test-driven Development requires only as much test-code written till it 
fails. That way the tests actually drive the design and increase confidence 
in the test-suite. 
It's not just a semantic difference.



Acceptance Test Driven Development - ATDD



Writing Acceptance Tests / UATs
FIT / FitNesse / Fixture

Fit ("Framework for Integrated Testing" is an engine that 
processes each FitNesse test table, using the Fixture 
Code referred to by that table. 
FitNesse is an HTML and wiki "front-end" to Fit. While Fit 
makes it possible to run test tables, it does not itself 
provide means of creating those tables or displaying the 
results of tests. This is where FitNesse comes in. FitNesse 
makes it really easy to create, run, organize, annotate, 
and share Fit tests throughout a software development 
team.
Interestingly both the wiki and Fit were developed by Ward Cunningham, and you can 
read about them both on Ward's c2 wiki.



Refactoring

Refactoring is a disciplined technique for restructuring an existing body 
of code, altering its internal structure without changing its external 
behavior.

● Refactoring lowers the cost of enhancements

● Refactoring is a part of day-to-day programming

● Automated tools are helpful, but not essential

There is 
-> no “Refactoring-Sprint”
-> no “Refactoring-Story”

It’s part of day-to-day programming. 



Refactoring Catalog 1/2

Change Function Declaration (Add Parameter • Change Signature • Remove 
Parameter • Rename Function • Rename Method)

Change Reference to Value

Change Value to Reference

Collapse Hierarchy

Combine Functions into Class

Combine Functions into Transform

Consolidate Conditional Expression

Decompose Conditional

Encapsulate Collection

Encapsulate Record (Replace Record with Data Class)

Encapsulate Variable (Encapsulate Field • Self-Encapsulate Field)

Extract Class

Extract Function (Extract Method)

Extract Superclass

Extract Variable (Introduce Explaining Variable)

Hide Delegate

Inline Class

Inline Function (Inline Method) 

Inline Variable (Inline Temp)

Introduce Assertion

Introduce Parameter Object

Introduce Special Case (Introduce Null Object)

Move Field

Move Function (Move Method)

Move Statements into Function

Move Statements to Callers

Parameterize Function (Parameterize Method)

Preserve Whole Object

Pull Up Constructor Body

Pull Up Field

Pull Up Method

Push Down Field

Push Down Method

https://refactoring.com/catalog/changeFunctionDeclaration.html
https://refactoring.com/catalog/changeFunctionDeclaration.html
https://refactoring.com/catalog/changeReferenceToValue.html
https://refactoring.com/catalog/changeValueToReference.html
https://refactoring.com/catalog/collapseHierarchy.html
https://refactoring.com/catalog/combineFunctionsIntoClass.html
https://refactoring.com/catalog/combineFunctionsIntoTransform.html
https://refactoring.com/catalog/consolidateConditionalExpression.html
https://refactoring.com/catalog/decomposeConditional.html
https://refactoring.com/catalog/encapsulateCollection.html
https://refactoring.com/catalog/encapsulateRecord.html
https://refactoring.com/catalog/encapsulateVariable.html
https://refactoring.com/catalog/extractClass.html
https://refactoring.com/catalog/extractFunction.html
https://refactoring.com/catalog/extractSuperclass.html
https://refactoring.com/catalog/extractVariable.html
https://refactoring.com/catalog/hideDelegate.html
https://refactoring.com/catalog/inlineClass.html
https://refactoring.com/catalog/inlineFunction.html
https://refactoring.com/catalog/inlineVariable.html
https://refactoring.com/catalog/introduceAssertion.html
https://refactoring.com/catalog/introduceParameterObject.html
https://refactoring.com/catalog/introduceSpecialCase.html
https://refactoring.com/catalog/moveField.html
https://refactoring.com/catalog/moveFunction.html
https://refactoring.com/catalog/moveStatementsIntoFunction.html
https://refactoring.com/catalog/moveStatementsToCallers.html
https://refactoring.com/catalog/parameterizeFunction.html
https://refactoring.com/catalog/preserveWholeObject.html
https://refactoring.com/catalog/pullUpConstructorBody.html
https://refactoring.com/catalog/pullUpField.html
https://refactoring.com/catalog/pullUpMethod.html
https://refactoring.com/catalog/pushDownField.html
https://refactoring.com/catalog/pushDownMethod.html


Refactoring Catalog 2/2

Replace Magic Literal (Replace Magic Number with Symbolic Constant)

Replace Nested Conditional with Guard Clauses

Replace Parameter with Query (Replace Parameter with Method)

Replace Primitive with Object (Replace Data Value with Object • Replace Type 
Code with Class)

Replace Query with Parameter

Replace Subclass with Delegate

Replace Superclass with Delegate (Replace Inheritance with Delegation)

Replace Temp with Query

Replace Type Code with Subclasses (Extract Subclass • Replace Type Code 
with State/Strategy)

Return Modified Value

Separate Query from Modifier

Slide Statements (Consolidate Duplicate Conditional Fragments)

Split Loop

Split Phase

Split Variable (Remove Assignments to Parameters • Split Temp)

Substitute Algorithm

Remove Dead Code

Remove Flag Argument (Replace Parameter with Explicit Methods)

Remove Middle Man

Remove Setting Method

Remove Subclass (Replace Subclass with Fields)

Rename Field

Rename Variable

Replace Command with Function

Replace Conditional with Polymorphism

Replace Constructor with Factory Function (Replace Constructor with 
Factory Method) 

Replace Control Flag with Break (Remove Control Flag)

Replace Derived Variable with Query

Replace Error Code with Exception

Replace Exception with Precheck (Replace Exception with Test)

Replace Function with Command (Replace Method with Method Object)

Replace Inline Code with Function Call

Replace Loop with Pipeline

https://refactoring.com/catalog/replaceMagicLiteral.html
https://refactoring.com/catalog/replaceNestedConditionalWithGuardClauses.html
https://refactoring.com/catalog/replaceParameterWithQuery.html
https://refactoring.com/catalog/replacePrimitiveWithObject.html
https://refactoring.com/catalog/replacePrimitiveWithObject.html
https://refactoring.com/catalog/replaceQueryWithParameter.html
https://refactoring.com/catalog/replaceSubclassWithDelegate.html
https://refactoring.com/catalog/replaceSuperclassWithDelegate.html
https://refactoring.com/catalog/replaceTempWithQuery.html
https://refactoring.com/catalog/replaceTypeCodeWithSubclasses.html
https://refactoring.com/catalog/replaceTypeCodeWithSubclasses.html
https://refactoring.com/catalog/returnModifiedValue.html
https://refactoring.com/catalog/separateQueryFromModifier.html
https://refactoring.com/catalog/slideStatements.html
https://refactoring.com/catalog/splitLoop.html
https://refactoring.com/catalog/splitPhase.html
https://refactoring.com/catalog/splitVariable.html
https://refactoring.com/catalog/substituteAlgorithm.html
https://refactoring.com/catalog/removeDeadCode.html
https://refactoring.com/catalog/removeFlagArgument.html
https://refactoring.com/catalog/removeMiddleMan.html
https://refactoring.com/catalog/removeSettingMethod.html
https://refactoring.com/catalog/removeSubclass.html
https://refactoring.com/catalog/renameField.html
https://refactoring.com/catalog/renameVariable.html
https://refactoring.com/catalog/replaceCommandWithFunction.html
https://refactoring.com/catalog/replaceConditionalWithPolymorphism.html
https://refactoring.com/catalog/replaceConstructorWithFactoryFunction.html
https://refactoring.com/catalog/replaceConstructorWithFactoryFunction.html
https://refactoring.com/catalog/replaceControlFlagWithBreak.html
https://refactoring.com/catalog/replaceDerivedVariableWithQuery.html
https://refactoring.com/catalog/replaceErrorCodeWithException.html
https://refactoring.com/catalog/replaceExceptionWithPrecheck.html
https://refactoring.com/catalog/replaceFunctionWithCommand.html
https://refactoring.com/catalog/replaceInlineCodeWithFunctionCall.html
https://refactoring.com/catalog/replaceLoopWithPipeline.html


Refactoring - again!

Definition
Martin Fowler gives the following definition of “refactoring”:
noun: a change made to the internal structure of software to 
make it easier to understand and cheaper to modify without 
changing its observable behavior
verb: to restructure software by applying a series of 
refactorings without changing its observable behavior.
Refactoring isn't another word for cleaning up code - 
it specifically defines one technique for improving the health 
of a code-base. 
The term "restructuring" could be used as a more general 
term for reorganizing code that may incorporate other 
techniques.



Behaviour Driven Development - BDD

Behavioral specifications

Title: Returns and exchanges go to inventory.

As a store owner,

I want to add items back to inventory when they are returned or exchanged,

so that I can track inventory.

Scenario 1: Items returned for refund should be added to inventory.

Given that a customer previously bought a black sweater from me

and I have three black sweaters in inventory,

when they return the black sweater for a refund,

then I should have four black sweaters in inventory.

Scenario 2: Exchanged items should be returned to inventory.

Given that a customer previously bought a blue garment from me

and I have two blue garments in inventory

and three black garments in inventory,

when they exchange the blue garment for a black garment,

then I should have three blue garments in inventory
and two black garments in inventory.



Cucumber / Gherkin

Cucumber is a software tool that supports 
behavior-driven development (BDD)

Central is its ordinary language parser called Gherkin. 
It allows expected software behaviors to be specified in 
a logical language that customers can understand. 
As such, Cucumber allows the execution of feature 
documentation written in business-facing text.
It is often used for testing other software.
It runs automated acceptance tests written in a 
behavior-driven development (BDD) style.



Example Gherkin



(Automated) GUI Testing

#1) Manual Based Testing: 
Testers apply their knowledge and test the graphical screen as per business 
requirements.
#2) Record and Replay: 
This is achieved using automation tools and their Record and Replay actions. Test 
steps are captured in the automation tool during Record and recorded steps are then 
executed on the application under test during Replay/Playback.
#3) Model-Based Testing:
● Event-based model: Based on GUI events that are to occur at least once
● State-based model: Based on GUI states exercised at least once
● Domain model: Based on domain and functionality of the application

Following steps are required:
- Build the model
- Specify inputs to the model
- Determine expected outputs
- Execute tests
- Compare actual and expected results
- Decide future actions to be taken 



Automated GUI Testing

Selenium is an open-source automation testing tool that supports a 
number of scripting languages such as Java, Perl, C#, Ruby, JavaScript, 
etc. It offers testers the flexibility to choose the script language, 
depending on the application under test. Additionally, Selenium caters to 
testing requirements by offering high accuracy within a limited time 
period, saving time and resources.



Apply Quality Test



Agile Testing Quadrants



The 7 Software “-ilities” You Need To Know

1. Usability
2. Maintainability / Flexibility / Testilbility
3. Scalability
4. Availability / Reliability
5. Extensibility
6. Security
7. Portability



Agile Testing Triangle

Hard to automate 

Easy to perform manually

=> expensive to run!

Hard to write

Easy to automate

=> cheap to run!

Reality?



Agile Testing Triangle

Hard to automate 

Easy to perform manually

=> expensive to run!

Hard to write

Easy to automate

=> cheap to run!

FLIP IT!



Agile Testing Triangle

FLIP IT!



Agile Testing Triangle

Automation expensive.
=> Automated UI / regression tests 
– by using Selenium or QTP
=> Manual testing

=> Automated Acceptance Testing – 
by Fit/ FitNesse

=> Automated Integration Testing 

Need to be kept up-to-date.
Need to be run regularly. 
=> Automated Unit testing – by 
using JUnit… xUnit



Agile Test Radar



Agile Test Radar - just an example

Unit 
Tests

UI-
Tests

Integrat
ion 

Tests

Regres
sion 
Tests

Static 
Code 

analysis

Compile 
time 
tests

autom. 
style 
guide 
tests

Flame 
Tests

Ility-
Tests

...



Discussion & Conclusion

Given what we 
know, have and want 

- what do we think will help us 
as the next step?


